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Abstract. The coercivity of the Smy(Fe, Ti)2oN, nitride is controlled by the nucleation
mechanism. The phenomenon of 2 mintmum of the coercivity in the angular dependence of
the coercivity is found for the Smy(Fe, Ti)oNy vitride. The small magnetizing field required
to obtain the saturation coercivity and the small interparticle interacton for the isctropic
Sms3{Fe, Ti)pNy magnet imply thar grains of Sm3(Fe, Ti)yN, are well isolated,

Recently a new ternary phase Nd,(Fe, Ti}j¢ was discovered by Collocott ef al {1] and a
similar phase was also indicated in R2(Feos1 Vooohy (R = Y, Nd, Sm, Gd) by Shcherbakova
et al [2,3]. The crystalline structure of this new phase has been found to be a Nds(Fe, Ti)ag-
type structure with monoclinic symmetry (space group P2y,) by Li ef ai [4]. The
Smj(Fe, Ti)2oN, nitride was first discovered by Yang ef al [5,6] with a Curie temperature
T = 750 K, saturation magnetization M, = 140 A m* kg™, anisotropy field H, = 12.8 T
and coercivity H; = 0.3 T at room temperature. A large coercivity of 0.8 T for Sms(Fe, Ti)ao
nitride was recently successfully developed by Hu et al [7]. In this letter, experimental
results of the magnetizing fieid dependence of the coercivity and remanence and the angular
dependence of the coercivity, as well as the interparticle interaction in Smsz(Fe, TN,
nitride, are reporied. _— i
Figure 1 shows the magnetizing field dependence of the coercivity and remanence
for isotropic Smgz(Fe, Ti)pNy nitride. H* and B represent the saturation values of the
coercivity and remanence after applying the magnetizing field, respectively. It is evident
that the magnetizing field dependence of H.(H)/H:™ and B.(H)/B* are very similar. With
increasing magnetizing field, By(H)/B# increases and, accordingly, more grains change
their multidomain state for the saturation state. Thus the number of positions that favour
nucleation decreases, which results in a rise of H.(H)/H:" with increasing magnetizing
field. The disappearance of the sharp step in the H (H)/H.—H curve indicates that the
coercivity of Sma(Fe, Ti)ys nitride is controlled by the nucleation mechanism. It can be also
seen from figure 1 that the magnetizinig fields required to obtain the saturation coercivity and
remanence are about 1.5 T, much sinaller than the anisotropy field of 12.5 T. Such a result
is different from the case in NdFeB ribbons [8], where the magnetizing field for obtaining
the saturation coercivity is relatively large, up to 3-5 T. It has been demonstrated that the
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Figure 1. The magnetizing field dependence of the  Figure 2. The experimental angular dependence of the

coercivity and remanence for isowropic Sm3(Fe, Ti)oNy,  coercivity for the Sma(Fe, TN, nitride (®). The

nitride. valve of the coercivity for isotropic Smgy(Fe, TizyN,
nitride is also plotted at 45° (¥).

magnetizing field dependence of the coercivity is related to the magnetic field required to
overcome the critical fields of the individual grains [8]. The critical field required to obtain
the saturation coercivity in the Sms(Fe, Ti)oN, nitride is only about 1.5 T, which implies
the existence of smaller stray fields around the grains of nitride.

The experimental angular dependence of the coercivity for Sms(Fe, Ti)zgN, is shown
in figure 2, It is obvious that with increasing angle between the alighment direction and
the direction of the external field, the ratio of coercivities H.(8)/H.(0) maintains the value
1.0 in the range 0 < 8 < 20°, and then decreases to 0.67 at & = 30°. At 8 = 50 and 65°,
this ratio increases up to 1.12 and 1.18, respectively. The ratio of coercivities H,(8)/H,{0)
for the Smz(Fe, Ti);oNy nitride is about 0.92. The minimum of coercivity may occur in the
range 30° < 8 < 50°, which agrees with the theoretical prediction [9, 10]. As we know,
another kind of permanent magnet with a minimum of coercivity in the angular dependence
of the coercivity is the PrBeB magnet, where the grains of PrFeB are well isolated from
each other by another phase surrounding the ProFeyB grains [11}. For NdFeB [9,12],
SmyFeysN, [13] and Nd{Fe, Mo)12N; [14] magnets, however, the coercivity increases with
increasing angle between the alignment direction and the direction of external field and no
minimum-coercivity phenomenon has been found. The different angular dependences of
the coercivity may reflect the different behaviours of the grain surfaces and stray field or
interparticle interaction between two kinds of magnet,

In the absence of interparticle interaction, the Wohlfarth relationship holds [15]:

Ba(H) = B(c0) — 2B(H)

where B.(H) is the remanence after application and removal of a field H to an initially
unmagnetized magnet. By(H) is the remanence after demagnetizing a fully magnetized
magnet. Henkel plotted By(H) versus Br(H), which should give a linear relationship, and
attributed any deviations from linearity to the effect of interparticle interaction [16]. Such
deviation from linearity can be estimated by the relation [17]

dm = By(H)/B:(00) + 2B:(H)/ Br(co) — 1.

Figures 3 and 4 show the Henkel plot and dm plot for isotropic Sms(Fe, Ti)ys nitride,
respectively, The results indicate that the interparticle interaction in this nitride is very
small, which implies that the grains of Sm3(Fe, Ti)oN, may be well isolated.
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Figure 3. The Henkel plot for the Sms(Fe, Ti)wN, Figure 4. The 8m plot for the Sm3(Fe, Ti);pN, nitride.
nitride,

In conclusion, the coercivity of the Sms(Fe,Ti)N, niiride is controlled by the
nucleation model. The phenomenon of a minimum of the coercivity in the angular
dependence of the coercivity is found for the Sma(Fe, Ti)N, nitride. The small magnetizing
field required to obtain the saturation coercivity and the small interparticle interactions for
the isotropic Sms(Fe, Ti)2oN, magnet imply that grains of Sm3(Fe, TN, are well isolated.
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