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LETTER TO THE EDITOR 

Hard magnetic behaviour and interparticle interaction in the 
Sm3(Fe, Ti)zgN, nitride 
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Abstract The wercivity of the SmdFe,7ihNy nitride is conlroUed by the nucleation 
mechanism. The phenomenon of a minimum of the coercivity in the angular dependence of 
the coercivity is found for the Sm(FePe,Ti)lgNy nitride. The small magneriZing field required 
to obtain the saturation wercivity and the small interpanicle interaction for the isotropic 
Sm3(Fe,Tl)29Ny magnet imply that grains of Sm3i.Fe,li12sNy are well isolated. 

Recently a new ternary phase Ndz(Fe,Ti)ls was discovered by Collocott et al [I] and a 
similar phase was also indicated in R2(Fe~.91v0.09)17 (R = Y,Nd,Sm,Gd) by Shcherbakova 
et a1 [2,3]. The crystalline strncture of this new phase has been found to be a Nd3(Fe, Ti)s- 
type structure with monoclinic symmetry (space group P~I,, ,)  by Li et a1 141. The 
Sm3(Fe, Ti)29Ny nitride was first discovered by Yang et a1 [5,6] with a Curie temperature 
Tc = 750 K, saturation magnetization M, = 140 A m2 kg-’. anisotropy field Ha = 12.8 T 
and coercivity H, = 0.3 T at room temperature. A large coercivity of 0.8 T for Sm,(Fe, r?)29 
nitride was recently successfully developed by Hu et a1 171. In this letter, experimental 
results of the magnetizing field dependence of the coercivity and remanence and the angular 
dependence of the coercivity, as well as the interparticle interaction in Sms(Fe,Ti)zsN, 
nitride, are reported. 

Figure 1 shows the magnetizing field dependence o f  the coercivity and remanence 
for isotropic Sm,(Fe, Ti)z9NY nitride. H,Sa‘ and BF‘ represent the saturation values of the 
coercivity and remanence after applying the magnetizing field, respectively. It is evident 
that the magnetizing field dependence of H,(H)/Hp‘  and Br(H)/BFL~are very similar. With 
increasing magnetizing field, B,(H)/Br‘ increases and, accordingly, more grains change 
their multidomain state for the saturation state. Thus the number of positions that favour 
nucleation decreases, which results in a rise of H,(H)/H,S” with increasing magnetizing 
field. The disappearance of the sharp step in the H,(H)/H,-H curve indicates that the 
coercivity of Sm3(Fe, Ti)29 ni&de is controlled by the nucleation mechanism. It can be also 
seen from figure 1 that the magnetizinig fields required to obtain the saturation coercivity and 
remanence are about 1.5 T, much smaller than the anisotropy field of 12.5 T. Such a result 
is different from the case in NdFeB ribbons [SI, where the magnetizing field for obtaining 
the saturation coercivity is relatively large, up to 3-5 T. It has been demonstrated that the 
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Figure 1. The magnetizing field dependence of the 
coercivity and remanence forisowpic Sm3(Fee.Ti)i)2sNY 
nitride. 

Figure 2. The experimental angular dependence of the 
cwcivitj  for the Sm3(Fe,Tik3Ny nitride (e). The 
value of the coercivity for isotropic Sm$.Fe,Ti),yN, 
nitride is also plotted at 4 9  (V). 

magnetizing field dependence of the coercivity is related to the magnetic field required to 
overcome the critical fields of the individual grains [XI. The critical field required to obtain 
the saturation coercivity in the Sm3(Fe, Ti)29Ny nitride is only about 1.5 T, which implies 
the existence of smaller stray fields around the grains of nitride. 

The experimental angular dependence of the coercivity for Sm3(Fe,Ti)z9Ny is shown 
in figure 2. It is obvious that with increasing angle between the alignment direction and 
the direction of the external field, the ratio of coercivities Hc(8)/H,(0) maintains the value 
1.0 in the range 0 < 0 < 20", and then decreases to 0.67 at 8 = 30". At 0 = 50 and 65", 
this ratio increases up to 1.12 and 1.18, respectively. The ratio of coercivities H@)/H,(O) 
for the Sm3(Fe, Ti)mNy nitride is about 0.92. The minimum of coercivity may occur in the 
range 30" -= 0 4 50", which agrees with the theoretical prediction [9,10]. As we know, 
another kind of permanent magnet with a minimum of coercivity in the angular dependence 
of the coercivity is the PrFeB magnet, where the grains of PrFeB are well isolated from 
each other by another phase surrounding the PrzFelhB grains [ll]. For NdFeB [9,12], 
SmlFel,N, [13] and Nd(Fe,Mo)lzN, [I41 magnets, however, the coercivity increases with 
increasing angle between the alignment direction and the direction of external field and no 
minimum-coercivity phenomenon has been found. The different angular dependences of 
the coercivity may reflect the different behaviours of the grain surfaces and stray field or 
interparticle interaction between two kinds of magnet. 

In the absence of interparticle interaction, the Wohlfarth relationship holds [15]: 

Bd(H) = &(CO) -2BdH) 
where E,(H) is the remanence after application and removal of a field H to an initially 
unmagnetized magnet. Bd(H)  is the remanence after demagnetizing a fully magnetized 
magnet. Henkel plotted &(H) versus B,(H), which should give a linear relationship, and 
attributed any deviations from linearity to the effect of interparticle interaction [16]. Such 
deviation from linearity can be estimated by the relation [17] 

6m = Bd(ff)/&(m) +2EI(H)/&(W) - 1. 

Figures 3 and 4 show the Henkel plot and 6m plot for isotropic Sms(Fe,Ti)zg nitride, 
respectively. The results indicate that the interparticle interaction in this nitride is very 
small, which implies that the grains of Sms(Fe,Ti)29Ny may be well isolated. 
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F i p  3. The Henkel plot for the Sm3(Fe.Ti)~yNy 
nitride. 
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Figure 4. The Sm plot far the Sms(Fe,li)BN, nihide. 

In conclusion, the coercivity of the Sm3(Fe,Ti)z9NY nitride is controlled by the 
nucleation model. The phenomenon of a minimum of the coercivity in the angular 
dependence of the coercivity is found for the Sm3@e,Ti)~N, nitride. The small magnetizing 
field required to obtain the saturation coercivity and the small interparticle interactions for 
the isotropic Sm3(Fe, X)29Ny magnet imply that grains of Sm3(Fe, X ) 2 9 N Y  are well isolated. 
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